
Creating a new Zcore-based Project
Chris Kelley

2/26/09

Creating a new Zcore-based Project ... 1
Eclipse Setup ... 1
Edit files while Eclipse is closed .. 2
Open the project in Eclipse ... 3

Copy templates and css files ... 21

Login and add a site .. 21
Importing forms .. 23

Creating new forms ... 24
Field names in Classes .. 24
Widget Tweaks ... 24

Set the correct path for the calendar widget .. 24

Pregnancy Dating widget .. 25
Modifications to the Patient Registration form ... 25

Extensions ... 25
Creating extensions ... 25

SessionPatientExtension ... 25
FormActionExtension ... 25

FormDAOExtension ... 26
Templates .. 26
Application Flow .. 26

Eclipse Setup

 Create a new branch of the zcore project in the subversion repository by copying

the zcore trunk to a new branch.

svn copy https://www.rtidemo.org/repos/zcore/trunk/

https://www.rtidemo.org/repos/zcore/branches/tcc -m 'Creating tcc branch'

 Check out the new project.

 Once the project is checked out, close Eclipse. You will edit some files that

should be edited without Eclipse running.

Edit files while Eclipse is closed

 Copy the directory that folds the “starter” Eclipse RCP app to a new directory.

This is directory contains the standalone Eclipse RCP application as well as the

zcore-based web application.

 Change the name of the webapp to the deployment name, i.e., the name the web

app when accessed from a web browser – http://localhost/zeprs:

 Edit the .project file

o Change the name of your project in a text editor. This will already be done

if you checked out this branch via svn using Eclipse

o Edit the path to the apache-work location. You probably just need to

update the following highlighted text:

<location>C:/zeprs_standalone/work/Catalina/localhost/zeprs/org</locatio

n>

 Edit the following files in the .settings/ directory:

o org.eclipse.wst.common.component

 change the deploy-name to your new project name

<wb-module deploy-name=”zeprs”>

This makes the correct name display when adding a web module.

 <property name="context-root" value="zeprs"/>

o org.eclipse.wst.common.project.facet.core.xml

 change <runtime name="ZEPRS - standalone - Apache Tomcat

v6.0"/>

Open the project in Eclipse

 Reset buildNum=0 and buildDate in version.properties and version.html

 Clear out all of the generated files from previous projects except for

CreateReferral.java, PatientRegistration.java, UserInfo.java, and

ReferralReasons.java

o src\zeprs\org\cidrz\project\zeprs\valueobject\gen

o src\zeprs\org\cidrz\project\zeprs\valueobject\report\gen – keep the files

mentioned above, adding “Report” to the filename (PatientRegistration

Report.java…)

 Clear out all of the XML files in src\zeprs\resources\xml\forms except for:

o Activefields

o Clinics

o CreateReferral

o Fields.xml

o FormTypes.xml

o PatientRegistration.xml

o ReferralReasons

o Sites

o UserInfo

 Copy the application directory, which contains the tomcat instance, eclipse rcp

code, database, and other useful files, to the deployment point (e.g. C:\

zeprs_standalone).

 Setup the Eclipse server settings.

 Web Project settings:

 Add a new server instance – you need to point to this new app.

 Create a new Server in the Servers view:

Click on the new server and click “Add”.

Click finish

 The new server now appears in the Server view:

 Double-click on the new Server to edit its parameters:

Please note that if you are also developing a separate instance of a zcore data

center, change the Tomcat admin port and AJP port as well:

This will enable you to run both instances at the same time.

Click the Modules tab at the bottom of the window to confirm that your new

module has been added:

 If it hasn’t been added, click “Add Web Module”:

Press Save to save these config. Settings.

 Edit the Java Build Path in the project properties. Remove any incorrect servers.

If your new server is not displayed, press Edit.

Choose the new server runtime you just setup:

After you press Finish it will take a few minutes to compile the classes and

display any errors about missing classes. The missing classes are likely due to the

cleaning out the generated classes. This is OK. Your project probably will not call

on the methods that use those classes.

 Point the Javadoc location to the project’s docs dir if available:

 Debug Configuration:

Select the server from the Server dropdown:

Change the path to the app in the Arguments pane:

Change the path to bootstrap.jar in the Classpath pane:

 Open web.xml and change the web-resource-name in the following section to the

name of the deployed web app:

Also here:

 Open src/resources/application.properties and edit the first 3 properties:

app.name, app.template, and app.title.

 Open src/resources/dev.properties and edit source and install properties

 Open build.properties (use for building wars and other automation with ant) and

edit the first 2 properties:

o project=zeprs

o install.dir = C:\\zeprs_standalone\\

 Open web/zeprs/META-INF/context.xml and change path and docBase in the

second line:

<Context path="/zeprs" docBase="zeprs"

 Edit web/zeprs/WEB-INF/pages/version.html. This file, which displays

application data in the title bar, is normally built automatically when you run the

build ant target; however, when you’re starting out, it’s nice to see the correct

project name in the browser’s title bar. Change the project name, build date, etc.

- ZEPRS 1.0 - buildDate: 2008/10/29 20:15 - buildNum: 1

 Edit js/javascript.js and replace the project name in the first line:

imgsrc = "/tcc/images/";

Once you have all of these things sorted, launch the app in Debug:

You should be able to login and run the site config. Most of the form-related functionality

won’t work yet, unless you branched from an instance w/ forms. Creating a new patient

should work however.

Copy templates and css files

Create a new directory in web/zeprs/WEB-INF/templates using the same name you used

for the app.template property. Copy all of the files in one of the other css dirs (zeprs is a

good choice) into this new dir.

Create a new directory in web/zeprs/css using the same name you used for the

app.template property. Copy all of the files in one of the other templates dirs (zeprs is a

good choice) into this new dir.

Login and add a site

If you have copied an instance that already has sites, this step may not be necessary.

Login as zepadmin. The system will take you directly to the Site Admin page to add a

site.

Enter a site name:

After you have saved the site, the system will display the site in the site list:

Click the ZEPRS link at the top right corner to configure this new site as your browser’s

site.

Once this is set, the home page will display:

Importing forms

From the left nav strip click Admin and

then click “Form Import” under “Form

Administration.

Note the location of where you must place the forms.

Place the PatientRegistration.xml form into the import/new directory and refresh the form

import page. The system will now list the new form:

Click on the link to import the form.

Creating new forms

Consider appending the project name to the beginning of the table name when creating a

new form. For instance, if the project name is tcc, name the table “tcc_form_name.”

Field names in Classes

Each form has its own associated class, xml file, and entries in the struts-related files.

When Dynasite generates the classes files for a form, it must create the field names for

each form field. See DynaSiteGenerator. generateSource. If the form was imported – it

checks for form.importId – the method concats the field id to “field.” New forms – ones

not imported – use the table name

(StringManipulation.firstCharToLowerCase(formField.getStarSchemaName())).

In the same vein, when the app starts up, the system creates an identifier for each field

(code in DynaSiteObjects. getFieldToPageItem) This identifier is used for the html object

id <td id="${pageItem.form_field.identifier}" …”) For new forms, the column name for

the field is the identifier. In earlier version of zcore such as ZEPRS, the field name is a

concatenation of “field” and the auto-generated field id. If a ZEPRS form is imported into

a new instance, the import id – the original field id - is used instead for the field name.

This keeps code for reports that use fields of the imported file working correctly;

otherwise, one would need to rename the field names in the code that accesses the fields,

because the field id would be different.

Todo: assignment of field name is too tightly bound to importId. Forms created in

projects created after ZEPRS should use the column name, not the importId

Widget Tweaks

Set the correct path for the calendar widget

Change the following path: imgsrc = "/zeprs/images/";

Pregnancy Dating widget

You normally don’t need to do anything to get this form to work. If you edit this form

using the admin interface and change the numeric values (used for rules processing) for

the “Dating Method” field, you’ll need to update the switch statement in the javascript

method processDatingMethod in pregnant.js

Modifications to the Patient Registration form

If you add fields to the Patient Registration form, you may wish to add some of the new

fields to the patient table. You will also need to add these fields to FormDAO.

createPatient’s patientValues ArrayList. Also adjust SQL_CREATE_PATIENT in

patientSQL.properties. Although the developer considered making an extension (see

below) to the createPatient method, it seemed clearer to keep all of these values in one

place. Plus, modifying the patient table may not be common to many other projects.

Extensions

In order to keep zcore from becoming too dependent on other project classes, an

extension facility is available that can be used to add functionality to certain objects. The

extensions are stored in org.cidrz.webapp.dynasite.utils.extensions package.

Creating extensions

Some guidelines:

 Name the new extension class similar to the class you wish to extend.

 Implement Extension class.

 The execute method takes a Connection and an Object. Cast your object to the

object that you’re passing within the method.

SessionPatientExtension

The updateSessionPatient in SessionPatientDAO calls SessionPatientExtension.execute.

The execute method calls some pregnancy-related methods. If you are working on a

project that does not need these methods, comment them out.

FormActionExtension

This class extends Action and handles form errors, persistence, dynaform value

assignment, and other mapping issues.

The createForward method provides custom forwarding of servlets.

FormDAOExtension

This class implements Extension; however, the execute method is unimplemented.. The

method updatePatientValues provides a useful post-processing hook after persisting a

form. There may be several hooks useful for FormDAO.

Templates

Edit the templates that are in the template directory corresponding with app_name for

your project – web/zeprs/WEB-INF/templates/app_name

 template-home – home page

 sidenav-full – side nav strip when viewing patient record

Application Flow

When the user clicks a link to a patient record, PatientHomeAction determines the most

appropriate form or task list to which to send the user. Edit this class as needed to suit

your app’s flow.

	Creating a new Zcore-based Project
	Eclipse Setup
	Edit files while Eclipse is closed
	Open the project in Eclipse
	Copy templates and css files
	Login and add a site
	Importing forms
	Creating new forms
	Field names in Classes
	Widget Tweaks
	Set the correct path for the calendar widget
	Pregnancy Dating widget

	Modifications to the Patient Registration form
	Extensions
	Creating extensions
	SessionPatientExtension
	FormActionExtension

	FormDAOExtension
	Templates
	Application Flow

